Providing our customers with structurally integrated electronics for advanced sensing, communications, and signals intelligence.

Direct Write Sensors for Space and Probe Applications

J.A. Brogan¹, R.J. Greenlaw¹, D.T. Arthur^{2,3}, R.C. Anderson², J.E. Andrade³

- ¹ MesoScribe Technologies, Huntington Beach, CA
- ² Jet Propulsion Laboratory, Pasadena, CA
- ³ CalTech Computational Geomechanics, Pasadena, CA

11th International Planetary Probe Workshop, June 16-20, 2014

Presentation Outline

- Company Overview
- Direct Write Printing Capabilities
- Direct Write Sensors/Instrumentation
 - ♦ Thermocouples
 - ♦ Heat Flux Gages
 - ♦ Recession Sensors
 - ♦ Heaters
 - ♦ Integrated Wiring
 - ♦ Antennas
- Summary

About MesoScribe Technologies

- Founded in 2002, spin-off from Stony Brook University
 - ◆ DARPA MICE Program
- Provider of 3D printing services and products for aerospace, energy, and military markets
 - Conformal sensors, printed traces, and antennas

Formerly located at the Long Island High Technology Incubator at SBU (LIHTI)

 Seeking manufacturing opportunities and strategic partners

Corporate Office

MesoScribe Technologies, Inc. 7 Flowerfield, Suite 28 St. James, NY 11780 Tel: 631.686.5710

Manufacturing Center

MesoScribe Technologies, Inc. 5445 Oceanus Drive, Suite 108 Huntington Beach, CA 92649 Tel: 714.894.8400

What is Direct Write?

- A family of fabrication processes that allow maskless patterning of materials directly from a CAD file
- Also Referred to as Digital Printing of Materials
- Direct Write allows sensors, antennas, and integrated wiring on components or embedded within structures

Benefits of Direct Write Fabrication

Traditional Electronics – Plate all surface with 1 material then remove unwanted material.

- → Flat, stiff substrates (occasionally flexible),
- ★ Limited materials, copper only
- ♦ Requires masking and hazardous etching materials

Direct-Write Electronics Deposit only the material needed where it is needed.

- ♦ Complex, curved parts of most any material
- Many material choices (metals, alloys, semiconductors, ceramics)
- ♦ No masking, no etching, and in many cases, no post processing needed

Direct Write Fabrication- Capabilities

Broad Feedstock Library

- **□** Conductors
 - ✓ Cu, Ni, Pt, Pd, Ag
- ☐ Sensor Alloys
 - ✓ NiCr, NiAl, NiSil, NiCrSil, CuNi
 - ✓ NiCrAlY, FeNi, PdAg
- □ Advanced Sensor Materials
 - ✓ ITO and other ceramic TE oxides
- **□** Dielectrics
 - ✓ YSZ, MgAl₂O₄... proprietary matls

Feature Sizes

- **☐** Dynamic feature control
 - ✓ Trace geometry can be actively tailored for complex patterns
- ☐ Feature width
 - ✓ Sensor traces $\geq 0.010''$ ($\geq 250 \mu m$)
- **☐** Feature Thickness
 - ✓ Sensor traces ~0.001" (≥25µm)

Direct Write Thermocouples (TCs)

- Passive devices that provide measurements of component temperature
 - ♦ Standard NIST designations (Types T, E, K, N)
 - ♦ Precious metal (Pt-Pd) and ceramic oxide TCs for use at elevated temperatures, > 1500F
- Improved accuracy achieved through post heat-treatments above use temperature
 - ♦ Within 2% error is achievable

1000

2020 Mars Rover Coring Bit

MESOSCRIBE

- Plan to instrument prototype HoneyBee Robotics
 2020 coring bit with low profile thermocouples
- Aim is to understand thermal conditions likely to be experienced by rock core samples during the upcoming 2020 Mars Sample Return mission
- Will help establish drilling parameters
- Data will enable Caltech Computational Geomechanics to produce thermal models for JPL to make informed decisions about which sciencedriven constraints to impose on mission

Specifications

Max Operating Temp: 800°C

Responsivity: 400μV per W/cm²

Absorptivity: 0.94 (w/emissivity coating)

Response Time: < 100ms (63.2%)

Sensor Size: 10x3mm (0.39"x0.12")

Benefits

- ♦ Low profile design
- ♦ No water cooling
- ♦ High temperature
- ♦ No adhesive/carrier limitations
- ♦ High sensitivity
- ♦ Custom sizes
- Printed onto part or provided as a stand alone sensor

Potential Space Applications

- ♦ In-situ monitoring of heat shield/TPS
- ♦ Monitoring of back-shell
- ♦ Instrumented calorimeter plugs for calibration of testing conditions (i.e. Arc-jet)

Recession-Tolerant Sensors for Thermal Protection Systems

TECHNOLOGY NEED

In-Situ diagnostic tools are needed for ablative TPS flight systems to provide better correlation from modeling to actual performance.

- Capability to print sensors onto heat shield materials
- Improved recession sensors using thermally activated ceramics
 - → Higher sensing temperature than Kapton (1,000C demonstrated)
 - ♦ Improved repeatability, not subject to Kapton char variability
- New recession-tolerant thermocouples and heat flux gage designs

Hypersonic Scramjet Instrumentation

- Direct Write heat flux gages are used in hypersonic SCRAMJET engine development
 - ♦ Demonstrated at AFRL/WPAFB direct connect tunnel test
 - ♦ Mach 5 flow, 3,000°F combustor gas temperature
 - ♦ Fast response sensor, high temperature capable, no water cooling

Results: Down-stream of the Combustor

Noteworthy Results

- ☐ Characteristic responses are mutually consistent and analogous to the sensors installed within the isolator and combustor
- ☐ Heat flux scales with the fuel equivalence ratio, as expected for down-stream locations
- ☐ Transient effects also apparent in Direct Write sensor responses
- ☐ Negative indicated heat flux upon cooling, which trends back to the pre-test value

Printed Heaters

Benefits

- → High Heat Flux (up to 500W/cm²)
- ♦ High efficiency, low contact resistance
- ♦ High temperature (no adhesive/carrier limitations)
- → High reliability (eliminates adhesive-related) failures), reduces redundancy
- ♦ Ability to print directly to complex, conformal surfaces
- Can be integrated with printed thermocouples for closed-loop control

- ♦ Satellite thermal control
- ♦ Fuel lines
- ♦ Ice-Detection and De-Icing
- ♦ Cryo-tanks

Integrated Wiring

DEMAND

Integrated conductors for signal routing to reduce installation costs and save space.

 Wires and connectors can be easily soldered to printed copper traces

- 115 V, 11 amps
- ~10°C temperature rise

Conformal and Integrated Antennas

DEMAND

Replace bulky antennas that disrupt airflow with lowprofile antenna structures that can be made conformal and/or structurally integrated within the air vehicle

Low-profile, conformal patterns for aerodynamic surfaces

New antenna designs that offer low RCS and multi-band capabilities

Large Aperture, Flexible Antennas

ROLL-TO-ROLL ANTENNA FABRICATION

- MesoScribe has developed a roll-to-roll deposition process to fabricate antennas onto polymer laminates
 - ✓ Kapton™, LCP, Tedlar™
 - ✓ No length limitation
- ☐ Application for space-based L-band, unfurlable antennas, airships, etc.

Frequency Selective Surfaces

Summary

- Direct Write enables the integration of high performance sensors, antennas, and conductors directly on-the-part or embedded within the structure.
- Provides new diagnostic monitoring capabilities of components or structures in harsh environments.
- Seeking opportunities to instrument flight hardware for laboratory and mission environments.

For More Information, Contact:

Rob Greenlaw, VP

714-894-8400 x2#

rgreenlaw@mesoscribe.com